If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+40x-256=0
a = 1; b = 40; c = -256;
Δ = b2-4ac
Δ = 402-4·1·(-256)
Δ = 2624
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2624}=\sqrt{64*41}=\sqrt{64}*\sqrt{41}=8\sqrt{41}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-8\sqrt{41}}{2*1}=\frac{-40-8\sqrt{41}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+8\sqrt{41}}{2*1}=\frac{-40+8\sqrt{41}}{2} $
| -(x-4)=3x-28 | | 2m/5-1=3 | | (x-453)=0 | | 4x-15=12x-101 | | 3x-2=x+38= | | 5+2(x-1)=×+4(x-3) | | 91=7x13 | | 5v-45=-5(v+5) | | y/2y=5(3+y | | 3(x+3)=8x-41 | | 0.8x-2.6=2.3x+2.1 | | 62=(14y+6) | | 6x-16=8x+5 | | -4(x+5)=0 | | 2z/9+3=6 | | 9×+8=7x+18 | | 12=12^2-4a | | x²+7=23 | | (x+3)²+(x+10)²=70 | | 14x-178=5x-7 | | 3x+40=x-12 | | b7+3=11 | | 9(x-4)=-5.4 | | x+x+8=64 | | 4x+3=-4-5 | | x+x+8=94 | | 7(a+7)=114.1 | | 5a+1=a-4 | | 38+x-15=2x-50 | | 3y-4=2y-2 | | 40.5=5c-9 | | 10a+3=5a-1 |